Scientists 'Clear' Alzheimer's Plaque From Mice Using Only Light And Sound

Scientists 'Clear' Alzheimer's Plaque From Mice Using Only Light And Sound

Scientists 'Clear' Alzheimer's Plaque From Mice Using Only Light And Sound

MIKE MCRAE
15 MAR 2019 on www.sciencealert.com

Clumps of harmful proteins that interfere with brain functions have been partially cleared in mice using nothing but light and sound.

Research led by MIT has found strobe lights and a low pitched buzz can be used to recreate brain waves lost in the disease, which in turn remove plaque and improve cognitive function in mice engineered to display Alzheimer's-like behaviour.

It's a little like using light and sound to trigger their own brain waves to help fight the disease.

This technique hasn't been clinically trialled in humans as yet, so it's too soon to get excited - brain waves are known to work differently in humans and mice.

But, if replicated, these early results hint at a possible cheap and drug-free way to treat the common form of dementia.

So how does it work?

 

Advancing a previous study that showed flashing light 40 times a second into the eyes of engineered mice treated their version of Alzheimer's disease, researchers added sound of a similar frequency and found it dramatically improved their results.

"When we combine visual and auditory stimulation for a week, we see the engagement of the prefrontal cortex and a very dramatic reduction of amyloid," says Li-Huei Tsai, one of the researchers from MIT's Picower Institute for Learning and Memory.

Previous studies showed bursts of ultrasound make blood vessels leaky enough to allow powerful treatments to slip into the brain, while also encouraging the nervous system's waste-removal experts, microglia, to pick up the pace.

Several years ago, Tsai discovered light flickering at a frequency of about 40 flashes a second had similar benefits in mice engineered to build up amyloid in their brain's nerve cells.

"The result was so mind-boggling and so robust, it took a while for the idea to sink in, but we knew we needed to work out a way of trying out the same thing in humans," Tsai told Helen Thomson at Nature at the time.

The only problem was this effect was confined to visual parts of the brain, missing key areas that contribute to the formation and retrieval of memory.

While the method's practical applications looked a little limited, the results pointed to a way oscillations could help the brain recover from the grip of Alzheimer's disease.

As our brain's neurons transmit signals they also generate electromagnetic waves that help keep remote regions in sync - so-called 'brain waves'.

To continue reading please click here

 

 


Leave a comment

Please note, comments must be approved before they are published